
Quick Start
from March 13, 2012

This first simple 'Objective-Basic' program will familiarize you with the
language, as well as with Cocoa and the Integrated Development
Environment (IDE). Follow the steps and read the explanations below and
you will find a whole new world to explore!

We estimate that you will need about an hour to complete this Quick Start
Manual.

First Things First

Let's go

Start 'Objective-Basic' by double clicking on the symbol on your desktop.

Create a new project

On the menubar, click File and then New Project (from now on, menu selections will be listed like
this: File | New Project). Enter a short name for your project, such as Quick Start (from now on,
anything you type from the keyboard will be bolded). Whatever you decide, a new directory will be
created with that name, into which all project files will be saved.

Don't use '/', '.', or other special characters. For now, just use numbers and letters, and you may add
spaces between words.

After clicking OK, a new project will be created for you, normally on the Desktop of the current
user (from now on, all folder and file names, as well as text on the computer monitor will be in the
Courier font).

Using 'Finder', you can look at the folder and you will see just one file,
Global.NSObject.objb (normally just called 'Global'). This is a special file automatically
created by 'Objective Basic' with the a few instructions – called a procedure – beginning with
Event AwakeFromNib().

The Global.NSObject.objb file is the file in which you may declare variables, constants, and
functions to be used as global elements of your program. If you understand something of object-
oriented programming, it will interest you to know that these elements do not need to be created as
objects beforehand, similar to a module in 'Virtual Basic'. The Event AwakeFromNib()
procedure is called after 'Cocoa' automatically loads MainMenu.xib on startup of your
application. You may freely add code to it, but we won't do much with it in this small tutorial.

The first run of your application

Let's run this small example and see what happens. Either click the run button in the toolbar of the
Objective-Basic IDE (), or in the menu bar, clicking on Compiler | Run.

Page 1

You probably noticed the command Alert("Hello”) in the Event AwakeFromNib()
procedure. This command makes the Alert window appear with the text Hello when you run your
application.

Stopping your application

When you click the Stop button in the toolbar (), select Compiler | Stop in the menu bar, your
application will immediately stop execution.

Editing your application

Let us change the AwakeFromNib procedure to "Hello World!”. Delete the line
Alert("Hello”) and type in Alert("Hello World!”). Run the example again as instructed “The
first run of your application” section above. Now Hello World! appears instead of Hello.

You have now edited your first 'Objective-Basic' application. Congratulations!

Working With Interface Builder (IB)

Windows and buttons

Now it's time to try a more sophisticated way to put a window on the screen. You will start
'Interface Builder' (IB) and use it to create a new window with a button on it. We will program the
application to change the button's title and to show a message, when the button is clicked. To get a
quick overview about 'IB', read the documentation provided with 'Objective-Basic' entitled 'Xcode
hints'. Click on Help | Xcode hints in the menu bar of the 'Objective-Basic' IDE.

Please note that the following instructions have been verified under 'Xcode®' 4.3, in which 'IB' is

Page 2

Screenshot 1: The screen of your Mac will look like this after running your new program.

integral to the 'Xcode®' IDE. In 'Xcode' version prior to 4.x, 'IB' was closely linked to 'Xcode', but
still a separate application. This may create slight differences in the following instructions.

Xcode®/Interface Builder (X/IB)

To start 'IB' , select Project | Xcode for MainMenu.xib in the menu bar.
'IB' will load with the default Graphics User Interface (GUI) file
MainMenu.xib. You are now in 'X/IB'.

In order to create a new window, do this.

1. In the menubar of 'Xcode', click View | Utilities | Show Object
Library.

2. Search the list for the element we need by clicking on (Object)
Library | Cocoa | Windows & Menus in the Object
Library.

3. An icon list will appear beneath the Windows & Menus
selection you just made. The first item in the list is Window.
Double-click Window and a new window will be inserted in the
project list of MainMenu.xib.

New Window

You will normally find that an empty window is already available in
your MainMenu.xib. But if you like, you can create another one.

Find the project file list named MainMenu.xib and double-click on the newly created window
shown as Window. The window will appear as empty window on screen, ready to be extended by
dropping controls on it (see the screenshot on this page).

New Button

Place a button on the empty
window. Again using the Object
Library window, select (Object)
Library | Cocoa | Controls |
Buttons. In the icon list below,
select Push Button,
dragging and dropping the
button onto newly created
window.

You can then click on the border
of the button and resize it. Or
you can click in the middle of
the button and drag it to a new
location.

Basic usage of Xcode's Interface Builder (X/IB)

With 'IB', once you have drawn your windows and controls, you can connect them to variables and
functions that you will program into your source code in the 'Objective-Basic' IDE.

Page 3

Screenshot 2: Object
Library

Next Step

First, save the file opened in 'Xcode's' 'Interface Builder'. In the menu bar of 'Xcode', select File |
Save.

Now that you have created a window and put a button it, you need to tell 'Objective-Basic' what you
want those controls to do. But before we take that next step, let's run your example again.

Switch to the 'Objective-Basic' IDE and then select Compiler | Run from the IDE menu bar. Several
things will happen.

1. The Alert box with your message will appear again.

2. But after clicking OK, your newly created window with the button will appear.

You just managed to get a custom Cocoa-based window to appear on your screen!

Connecting Code And Objects

Writing code for the window

Code is always written in the IDE of 'Objective-Basic'. We now need to write code for the window
that was created in 'Xcode' by creating a new source code file in the 'Objective-Basic' IDE. Do this:

1. Using the menu bar, select Project | New File With Super Class |
NSObject.

2. Enter code as the name.

3. Add this new line in the empty window: IBOutlet mybutton As NSButton. It doesn't
matter what line you place the code on. The code declares a variable called mybutton. The
rest of the source code in the project will use the variable to control the button object you
created in the MainMenu.xib file.

4. Add these following lines.

IBAction myevent(sender As id)
mybutton.Title = "Just changed the title"

End IBAction

These lines create an event-triggered procedure used for the 'Interface Builder' objects you have
created. “Event-triggered” means that when the button is clicked (the “event”), the above code is
triggered (or “called”).

Finally, click the Build button () (or use the menu bar to select Compiler | Build) to inform
'IB' about the changes in your source code. Do this whenever you add or remove 'IB'-related code in
the 'Objective-Basic' IDE. The current version of the 'Objective-Basic' IDE automatically updates
the changes in X/IB, when you use IB button on the menu bar, or switch to X/IB by selecting
Project | Xcode ... on the 'Objective-Basic' menu bar.

Connecting The Object

Writing those lines was part one. Now you need to tell 'X/IB' about the source code you have
written. We need to make use of the code file code.NSObject.objb in 'IB' by telling IB to use
the file when the MainMenu.xib file is loaded. code.NSObject.objb is actually a class,
from which usable objects are created (“instantiated” in object-oriented parlance). To do that, we
need to create a new empty object and add to the list of objects.

Page 4

1. First, switch to X/IB.

2. Use the Xcode® menu bar and select View | Utilities | Show Object Library.

3. Select Library | Cocoa | Objects & Controllers in the Object Library.

4. From the icon list beneath Objects & Controllers, select Object by double
clicking on it. A new object will be inserted in the project list of MainMenu.xib.

5. Select this newly created object and change the class of that object by typing code in the
Custom Class box. It is not important that you know what exactly class means here. We
may see it as the file name used for the creation of objects. In our case, the file name is
code.NSObject.objb, the “class name” we created in 'Objective-Basic'.

Telling 'X/IB' about your coded IBOutlet and
IBAction

We are nearly finished with your example. The last task is to
connect the IBOutlet and IBAction procedures you
wrote in the source code file in 'Objective-Basic', with the
button created in the window in 'X/IB'. Do this:

 1. For IBOutlet:

(a) Open the context menu for the newly created
object code in the MainMenu.xib window by
left-clicking on it.

(b) If necessary, click on the triangle-shaped arrow
next to Outlets. You will see the reference to the
mybutton variable you created.

Page 5

Screenshot 3: The property window is used to change the class name of the object. Select Identity
Inspector in the property window (upper right) to see the class identity.

(c) Draw a line from the circle to the right of mybutton to the button on the window you
created in 'IB'.

 2. For IBAction: The idea is exactly the same. Draw a line from myevent: in the context
menu of the code object to the button.

You can think of IBOutlet as an “outlet” from your code in 'Objective-Basic' to a GUI object in
'X/IB'. IBAction is the “action” that will be performed, when the GUI object in 'X/IB' is
triggered – in this case, the button.

Now, let's text your program!

 1. Save the project in 'Xcode'.

 2. Switch to the 'Objective-Basic' IDE and run your example.

 3. Here's what should happen.

(a) The Alert box will appear with your “Hello world!” message.

(b) When you click the OK button in the Alert box, the box will disappear and the window
you created will appear.

(c) In that window, your button will read Button.

(d) However, when you click your button, the name of the button will change to “Just
changed the title,” assuming you followed the instructions above.

Closing Final Tip
You can use your ESC key to get the list of all the possible commands with code completion.

To be continued and ... have a lot of fun!

Copyright

Copyright © 2007 - 2012 by www.objective-basic.com.

Products named herein are trademarks of their respective owners.

Page 6

	First Things First
	Let's go
	Create a new project
	The first run of your application
	Stopping your application
	Editing your application

	Working With Interface Builder (IB)
	Windows and buttons
	Xcode®/Interface Builder (X/IB)
	New Window
	New Button
	Basic usage of Xcode's Interface Builder (X/IB)
	Next Step

	Connecting Code And Objects
	Writing code for the window
	Connecting The Object
	Telling 'X/IB' about your coded IBOutlet and IBAction

	Closing Final Tip
	Copyright

