
What Is Xcode® With Interface Builder
And What Are Xib/Nib Files?

From March 13, 2012

Definitions
'Xcode®' is the Integrated Development Environment (IDE) for Mac OS X® provided by Apple®
and is widely used among Objective-C developers. It provides the context in which all of the
various parts of code and design elements (such as windows and buttons) are tied together.

'Interface Builder' ('IB') is the Graphic User Interface (GUI) editor for 'Xcode®'. Prior to version 4.x
of 'Xcode', 'IB' was closely tied together with 'Xcode'. Starting with version 4, 'IB' is integrated with
and part of Xcode®.

Cocoa is the environment that provides the general “look and feel” of Mac OS X®, from it's color
schemes, to it's behaviors in the various control elements (windows, check boxes, push buttons,
radio buttons, and so on). It is an object-oriented application environment designed specifically for
developing Mac applications quickly and efficiently.

'Xcode®' is also the best GUI tool for Mac OS X® development, because it is tightly connected to
Cocoa. In fact, one could say that 'Xcode' is part of Cocoa.

Files that end with .xib or .nib are created by 'IB' and contain the information which ties design
elements (windows and controls) together with code (outlets and actions). The xib/nib files are
automatically loaded by your application when it is run.

Note that there are some significant differences between .xib and .nib files, the nature of which are beyond the
scope of this document. Both describe the various elements of your application and tie them together with your code.
.xib files are a text-based XML representation of user data and is a pre-compiled .nib file. .nib files may also
contain additional information about executing your code and custom objects or classes that should be used in your

program. Even Apple's own documentation contains relatively little information about these files.

Two Special Keywords
In 'Xcode/Interface Builder' ('X/IB') you draw your windows and controls and connect them to
variables (or in “Apple-speak,” properties) and functions (or procedures, or in “Apple-speak,”
methods) declared in your source code in the Objective-Basic IDE. Two special keywords are used
for this task.

IBOutlet

IBOutlet lets you connect variables (code you have written) to controls (design elements, such as
buttons). Think of this keyword as an “outlet” from your code to your button, check box, or other
design element. The variables defined in your source code are just like ordinary variables, except
that they point to a control in a .nib/.xib file, which is loaded on application startup. Here's an
example.

IBOutlet mybutton As NSButton
In this case, the variable mybutton in your source code refers to a button object in 'IB'. The result
of a function that operates on the variable of your code will be directed to the button object. The

Page 1

next entry makes this clearer.

IBAction

IBAction is used to when an “event” occurs, such as the clicking of a button on the screen. This
of this keyword as the “action” written into your software that is taken by the button (or other
design element), when it is triggered. “Actions” are defined in your source code like ordinary
functions and then connected to the interface controls in Xcode/Interface Builder. Here is an
example.

IBAction helloworld(sender As NSObject)
mybutton.Title = “New Title” ' or other code here

End IBAction

In this case, if the Button is pressed in the user interface, the function helloworld defines the
variable Title of the object mybutton as “New Title.” mybutton addresses NSButton object
via the IBOutlet declaration and the title of the button is changed.

A schematic looks something like this:

Objective-Basic Code Explanation
Xcode/Interface

Builder

IBOutlet mybutton As NSButton

IBOutlet defines the variable
mybutton as an “outlet” to the

button object (of the the type
NSButton) in 'X/IB'.

→

↓

IBAction myevent(sender As id)
 mybutton.Title = "New Title"
End IBAction

An “event” occurs (here, a button is
clicked), calling a function/method

(identified by the keyword
IBAction) which changes the title
property of the button object through

the mybutton variable.

←

↓

Application startup, automatically loading xib/nib file, and
object creation of windows and controls
The main .xib/.nib file is loaded automatically loaded by Cocoa for you. When it loads, the
.xib/.nib loader allocates and initializes all objects, and “hooks up” all outlets and actions
defined by IBOutlet and IBAction in your code. After all outlets and actions are connected,
the loader then calls the special event procedure AwakeFromNib of each object in the
.xib/.nib file.

This is where you can access outlets to set up default values or do configuration in code.

Whenever you change code by adding or removing IBActions or IBOutlets in the Objective-Basic IDE, hit the "Build"
button to inform Xcode/Interface Builder about the changes in your source code. In the current version of the IDE of

Page 2

Objective-Basic, it automatically updates the changes for IB, if you use the Interface Builder button in the toolbar or
the related items in the menubar to switch to Interface Builder.

Xcode® Variations

Xcode 3: Several windows in
Interface Builder let you create the
needed GUI

There is a main window listening all objects
and windows. Double click on a object item in
the list and it will be opened, ready for editing.

The property window let you change the
properties of windows and controls. Select
Tools | Attributes Inspector in the menu bar to
see it.

The object and control list let you choose the
new objects or controls to be insert. Select
Tools | Library in the menu bar to see it.

Page 3

Screenshot 1: In Xcode 3, the list of windows and objects
available in the nib file looks like this.

Screenshot 3: In Xcode 3, the property
window let you change the properties of
windows and controls.

Screenshot 2: In Xcode 3, the object and
control list let you choose the new objects or
controls to be insert.

Xcode 4: One window with several panes in Interface Builder let you
create the needed GUI

Xcode 4 uses a single window, called the workspace window, that holds most of the
data you need. The 3 components mentioned in Xcode 3 are available in Xcode 4 and
are found as follows.

• The Windows and Objects list is found on the bar between the navigator and editor
areas. See screenshot 5.

• The properties of an object can be found under the Attributes Inspector on the
Inspector selector bar. See the upper right of screenshot 4 above.

• The list of objects and controllers is found under the Object library button on the
Library selector bar. See the lower right of screenshot 4.

Switching between Xcode/Interface Builder and the
IDE of Objective-Basic
In the menu bar, select Project | Xcode for MainMenu.xib and 'X/IB' will be open with
the .xib/.nib file for the current project (MainMenu.xib), ready for editing.

Always save your changes in 'X/IB' in order to communicate the changes in 'Xcode' to
the Objective-Basic IDE.

To be continued ...

Page 4

Screenshot 5

Screenshot 4

Copyright

Copyright © 2007 - 2012 by www.objective-basic.com.

Products named herein are trademarks of their respective owners.

Page 5

	Definitions
	Two Special Keywords
	IBOutlet
	IBAction

	Application startup, automatically loading xib/nib file, and object creation of windows and controls
	Xcode® Variations
	Xcode 3: Several windows in Interface Builder let you create the needed GUI
	Xcode 4: One window with several panes in Interface Builder let you create the needed GUI

	Switching between Xcode/Interface Builder and the IDE of Objective-Basic
	Copyright

